|
O‘zbekiston Respublikasi Oliy va O‘rta maxsus ta’lim vazirligi Toshkent Davlat Iqtisodiyot Universiteti soatov n. M., Tillaxo‘jayeva g. N
|
bet | 160/275 | Sana | 19.09.2020 | Hajmi | 7,16 Mb. | | #11452 |
Juft korrelyatsiya
Ikki hodisa yoki omil va natijaviy belgilar orasidagi bog‘lanish juft korrelyatsiya deb ataladi. Tahliliy jihatdan u turli, masalan, to‘g‘ri chiziqli, parabola, giperbola va boshqa shaklli regressiya tenglamalari orqali tasvirlanadi. Tenglama tipini aniqlash uchun bog‘lanish haqidagi ma’lumotlarni grafiklar orqali tasvirlab, ularni sinchiklab tekshirish zarur. Ammo bu yo‘ldan foydalanmasdan, birmuncha umumiyroq tartib-qoidalarga asoslanish mumkin. Masalan, agarda omil va natijaviy belgilar birday, qariyb arifmetik progressiya bo‘yicha ortsa, bu hol ular orasida to‘g‘ri chiziqli bog‘lanish mavjudligi haqida shohidlik qiladi. Agarda ularning nisbiy o‘sish sur’atlari deyarlik birday bo‘lsa, bu holda egri chiziqli bog‘lanish mavjud. Agarda natijaviy belgi arifmetik progressiyaga monand ortgan holda omil belgi geometrik progressiyaga monand ortgan holda omil belgi bir muncha tezroq ko‘paysa, ular orasidagi bog‘lanish parabola yoki darajali funksiya orqali ifodalanadi.
10.3. Boshlang‘ich ma’lumotlar asosida regressiya tenglamasini tuzish.
To‘g‘ri chiziqli regressiya tenglamasi korrelyatsion bog‘lanishning eng umumiy tavsifi hisoblanadi. Bu holda natijaviy va omil belgilari orasidagi bog‘lanish to‘g‘ri chiziqli funksiya deb qaraladi, ya’ni y=a+bx.
Ammo haqiqatda funksional bog‘lanish mavjud bo‘lmagani uchun bu tenglama yechimga ega emas, chunki, u ikkita noma’lum parametr (a0, a1) larga ega. Shuning uchun chiziqli regressiya tenglamasini hisoblash uchun dastlab bu tenglamani normal tenglamalar tizimiga keltirish zaruriyati tug‘iladi. Bu masala odatda kichik kvadratlar usuli orqali yechiladi. Uning mohiyati shundan iboratki, natijaviy belgining haqiqiy qiymatlari (yi) bilan uning regressiya tenglamasi yordamida olinadigan (faqat omil belgi ta’siri ostida shakllanuvchi) tegishli qiymatlari ( ) orasidagi farqlar kvadratlarining yig‘indisi minimum bo‘lishi zarur.
Ya’ni yoki . Demak, normal tenglamalar tizimini tuzish masalasi to‘g‘ri chiziqli funksiya a0 va a1 parametrlarning ekstremumni (bu holda minimumni) aniqlashga borib taqaladi.
|
|
Bosh sahifa
Aloqalar
Bosh sahifa
O‘zbekiston Respublikasi Oliy va O‘rta maxsus ta’lim vazirligi Toshkent Davlat Iqtisodiyot Universiteti soatov n. M., Tillaxo‘jayeva g. N
|