|
Guliston davlat universiteti axborot texnologiyalari va fizika-matematika fakulteti amaliy matematika va axborot texnologiyalari kafedrasi
|
bet | 2/14 | Sana | 27.01.2024 | Hajmi | 0,76 Mb. | | #147056 |
Bog'liq Safoyev Dilnoza kurs ishi 1Kurs ishining dolzarbligi: gipotezalar yaratish va ularni shakllantirish, hosil bo’lgan gipotezani teshshirish va modellashtirish.
Kurs ishining maqsadi: Gipotezalar haqida ma’lumot ega bo’lish. Gipotezalarni yaratish, shahkllantirish va tekshirishni o’rgatish. Turli xil gipotezalar bilan tekshirishni o’rganish.
Kurs ishining vazifalari:
Gipotezalarni tekshirish va qo‘yish modeli usullariga doir misollarni yechish va dastur tuzish;
Dastur tuzish jarayonida algoritmlar va hisoblash usullari, tadbiqiy matematika, gipoteza yechishni o‘rganish;
I – BOB. GIPOTEZANING HOSIL BO’LISHI VA RIVOJLANISHI.
Yangi texnika va texnologiyaning keskin o‘sib borishi, matematika fanining zamonaviy bo‘limlarini xalq xo‘jaligi masalalarini yechishga yanada ko‘proq qo‘llanila boshlagani amaliy masalalarni yechishga ixtisoslashtirilgan bakalavrlar va magistrlarni tayyorlashga bo‘lgan talabni borgan sari orttirib bormoqda.
Hozirgi kunda tayyorlanayotgan bakalavrlarning matematik ma’lumoti oliy matematika fanida o‘qitilayotgan an’anaviy bo‘limlar bilan chegaralanib qolmasligi zarur. Ayniqsa "Amaliy matematika" yo‘nalishi bo‘yicha ta’lim olayotgan talabalardan zamonaviy matematikaning zarur bo‘limlarini bilishni, birinchi galda esa hisoblash matematikasining usullarini mustahkam egallashni va ulardan amaliy masalalarni yechishda foydalanishni hamda yechilayotgan masalani dasturini yaratib, zarur sonli yechimni olishga erisha olishlari talab etiladi.2
Shuni yana ta’kidlab o‘tish lozimki, zamonaviy hisoblash texnikasini unumli ishlatish taqribiy va sonli analiz usullaridan oqilona foydalanishsiz mumkin emas. Shuning uchun, rivojlangan chet el mamlakatlarida va davlatimizda hisoblash matematikasiga bo‘lgan qiziqish keskin ortib bormoqda. EHM larning oxirgi paytlarda rivojlanib borishi sonli-taqribiy usullarning amalga tadbiqiga keng istiqbol yaratdi. Ma’lumki, hayotda uchraydigan barcha jarayonlarning matematik modellarini tuzish mumkin. Bu modellar o‘rganilayotgan jarayonning asosiy xususiyatlarini o‘zida iloji boricha to‘laroq, to‘kisroq mujassam qilishi kerak. Bu esa matematik modellarning ilojsiz murakkablashuviga sabab bo‘ladi. Bunday matematik modellarni ishlatish, ular asosida qaralayotgan jarayon ko‘rsatkichlarining xususiyatlarini tasvirlovchi yechim olish ham o‘z navbatida murakkablashadi. Demak, izlanuvchi oldida bir-biriga zid ikki masala ko‘ndalang bo‘ladi: matematik modellar yetarli darajada mukammal va murakkab bo‘lishi kerak, lekin bunday modellarni ishlatish qator qiyinchiliklarni ham keltirib chiqaradi. Matematik modellarni tashkil qiluvchi algebraik, chiziqsiz differensial, integral, integro-differensial va boshqa tenglamalarni yechish usullari yetarli darajada takomillashmagan. Matematika kurslarida keltirilayotgan aniq, analitik usullar faqat xususiy ko‘rinishdagi, soda tenglamalarning yechimini topish imkonini beradi, holos. Sonli-taqribiy usullar esa umumiyroq, ancha murakkab tenglamalarning yechimlarini topishga imkon beradi. Natijada analitik usulda yechilmagan tenglamalarni EHM larda sonli-taqribiy usullar bilan yechish imkoniyati yaratildi. "Amaliy matematika "yo‘nalishi bo‘yicha ta’lim olayotgan bakalavrlar amaliy masalalarni EHMda yechishlari uchun ikkita asosiy yo‘nalish bo‘yicha yetarlicha chuqur bilimga ega bo‘lishlari kerak. Birinchidan, ular EHM uchun biror zamonaviy algoritmik tili ma’lum algoritm asosida dastur tuzishni bilishlar, ikkinchidan amaliy masalalarni yechishning sonli - taqribiy usullari haqida ham yetarlicha bilimga ega bo‘lishlari kerak.
Gipoteza yaratish
Gipoteza atamasi kelib chiqishi yunoncha bo'lib, u "gipoteza" dan kelib chiqadi, bu taxminni anglatadi, u o'z navbatida gipo: past va tezisdan: xulosadan kelib chiqadi. Uning etimologiyasiga ko'ra, gipoteza aniq bir tushunchadir, u qo'llab-quvvatlash vazifasini o'taydigan muayyan holatlarga asoslangan. Bu tadqiqotchiga yoki olimga haqiqatni topishda yordam beradigan taxminiy tushuntirish.
|
|
Bosh sahifa
Aloqalar
Bosh sahifa
Guliston davlat universiteti axborot texnologiyalari va fizika-matematika fakulteti amaliy matematika va axborot texnologiyalari kafedrasi
|