Ehtimollik va statistika” 2 fanidan mustaqil ish 2-kurs 730-22 guruh talabasi




Download 0,85 Mb.
bet3/6
Sana06.06.2024
Hajmi0,85 Mb.
#261017
1   2   3   4   5   6
Bog'liq
Ehtimollik va statistika

1-ta’rifdiskret tasodifiy miqdorning matematik kutilmasi deb, ushbu

tenglik bilan aniqlanuvchi songa aytiladi.
Diskret tasodifiy miqdorlarning mumkin bo‘lgan qiymatlari soni cheksiz bo‘lishi
ham mumkin. Bu holda  va matematik kutilmani ta’riflash uchun
qatordan foydalaniladi. Matematik kutilma mavjud bo‘lishi uchun (1) qatorni absolyut yaqinlashuvchi deb faraz qilinadi.
Ba’zi misollarni qarab chiqamiz.
1-misol. A hodisaning ro‘y berish ehtimolligi p ga teng bo‘lsa, bitta tajribada A hodisa ro‘y berish sonining matematik kutilmasini toping.
Yechish. Bitta tajribada A hodisaning ro‘y berish sonini  deb belgilaylik. U holda
,
bu erda  va 1-ta’rifga asosan,  .
2-misol.  parametrli binomial qonun bilan taqsimlangan tasodifiy miqdorning matematik kutilmasini toping.
Yechish:  orqali A hodisaning n ta bog‘liqsiz tajribalarda ro‘y berish sonini belgilasak,  ,  tenglik o‘rinli ekani bizga ma’lum.Matematik kutilma ta’rifiga ko‘ra

3-misol. Puasson qonuni bilan taqsimlangan tasodifiy miqdorning matematik kutilmasini toping.
Yechish:  tenglik o‘rinli ekani bizga ma’lum.
Uning taqsimot qonunini ushbu jadval ko‘rinishida yozamiz.

хi

0

1

2



m



pi













Matematik kutilmasi uchun quyidagiga ega bo‘lamiz:

Qavs ichidagi qator  funksiyaning Makloren qatoriga yoyilmasidir. Shuning uchun matematik kutilma  . Shunday qilib, biz Puasson taqsimot qonuniga kirgan  parametrning ehtimolliy ma’nosini topdik:  parametr tasodifiy miqdorning matematik kutilmasiga teng.
uzluksiz tasodifiy miqdorning zichlik funksiyasi p(x) bo‘lsin.

Download 0,85 Mb.
1   2   3   4   5   6




Download 0,85 Mb.

Bosh sahifa
Aloqalar

    Bosh sahifa



Ehtimollik va statistika” 2 fanidan mustaqil ish 2-kurs 730-22 guruh talabasi

Download 0,85 Mb.